
Journal of Engineering Mathematics 29:591-606, 1995. 591 
@ 1995 KluwerAcademic Publishers. Printedin the Netherlands'. 

Velocity inversion for acoustic waves with wavelet 
operator 

SONG SHOUGEN and HE JISHAN 
Central South University of Technology, Institute of Applied Geophysics, Hunan, Changsha, 410083, 
P.R. China 

Received 9 February 1994; accepted in revised form 30 May 1995 

Abstract. Seismic exploration is an important method in geophysical engineering. In this paper, with three- 
dimensional wavelet operator, a new inverse and imaging method is presented to the seismic inversion problem. 
Compared with the singular-function method in [1], [2] and [3], the method in this paper can suppress the noise in 
real-world data and can provide a formula to estimate the error produced by the band-limited nature of the data. 
As a result, the location of the interior surface in the earth can be detected more precisely. 

1. Introduction 

Bleistein and Cohen presented a theory for asymptotic inversion of observations for the 
acoustic wave equation in [1-3]. The inversion operator/3(z) was introduced by them and, by 
using velocity singularities, they have shown that/3(z) is a band-limited Delta function on the 
interior surface for the band-limited input data. Because the inversion operator/3(z) in [2-3] 
is a generalization of the derivative operator Oa(z)/Oz in [1],/3(z) is highly sensitive to noise 
in real-world data. On the other hand, the observed data are limited by the frequency band 
being used in seismic exploration and, in this case, the inversion operator/3(x) in [2-3], which 
is a band-limited Delta function on the interior surface, will produce error. How to estimate 
this is another matter. Therefore, it is necessary to find a new inversion method which can 
suppress the noise and can also analyse the error in the imaging process. 

Recently, the subject of wavelet analysis has drawn a great deal of attention from mathe- 
matical scientists in various disciplines [4], [5] and [7]. It is creating a common link between 
mathematicians, physicists and engineers. In this paper, based on the approximate formulae 
developed by Bleistein, the authors advance a new method of velocity inversion by using the 
properties of the double localization in the space-frequency domain of the wavelet function 
as well as the focusing function. A theoretical analysis is made and the new imaging formulas 
are obtained. 

Of course, it should be admitted that inverse problems are ill-posed. However, this is not 
the same for all inverse-problem methods. A general guiding rule is to ask only what you 
expect from the data. A simple example is to avoid trying to extract signal from a portion of 
the frequency band consisting only of or mostly of noise. With such simple considerations we 
extract the singularity of the velocity to map the interface in the earth by the wavelet operator. 
Fortunately, the techniques described in this paper are sufficiently robust that the quality of 
the results "degrade gracefully" when the ideal conditions are not met. 

We will show that the method in this paper can not only suppress the noise in the observed 
data by the wavelet's focusing function, but also analyse the effect of the band-limited nature 
of the input data. Finally, we check it by numerical computation. 
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To emphasize the basic idea, here we consider only the seismic inverse problem for the 
constant background zero-offset case. 

2. Wavelet operator and the recognition of interior surface 

First, we introduce a right-handed coordinate system x = (xl, X2, X3) with x3 being positive 
in the downward direction into the earth. The observed field is the back-scatter response from 
an acoustic point source set off at every point ( = ((l, (2, 0) on the surface of the earth. We 
assume the total field u(x, ~, w) is the solution of the three-dimensional Helmholtz equation 
with point source at ( = ((1, ~2, 0): 

60 2 
V2tt(X, ¢, ~ )  -'}- 7 ~ ( X ,  ¢, ¢0) -~- --•(X 1 -- ffl)a(X2 -- ~2)~(X3). 

with the Sommerfeld's radiation conditions 

(2.1) 

ru is bounded, 

r Or v u ~ 0  as r - -+cc ,  

where v = Ix], v = v(x) is the wavespeed we seek. 
The wavespeed is represented as a perturbation on a known reference speed, c(x), expressed 

mathematically as follows: 

1 1 
v2(x ) - c2(x ) [1 + c~(x)]. (2.2) 

We decompose the total field into an incident and scattered field, 

u(x, ~, w) = u~(x, ~, w) + us(x, ~, w). (2.3) 

Similarly as Bleistein et al. [2], when the subsurface velocity variation is small, under Born 
approximation, for the constant background zero-offset case, one obtains 

ol(x) = 8c3 .f_~ d 2 ~ / ~  k3exp{Zi[k. ( p - ~ ) -  k3x3]}d3k 
i T f  2 _ _  

1 tus (~, ~, t) exp{ia;t} 1 + ~-~ dr. (2.4) x w---g 

Where, d2~ = d~ld~2, d3k = dkldk2dk3, p = (xl ,x2,0),  ~ = (~1,~2,0), k = (kl, k2,k3), 

w = co sgn(k3), v/k 2 + k 2 + k~. 
Under the high-frequency assumption, from (2.4), one obtains 

c~(x) -- 8c3 f_~ d2~ " f~oo k3exp{k. ( p - i f ) +  k3x3]}d3k 
irr 2 c~ 

1 fo °° tus (~, ~, t) exp{iwt} dr. (2.5) xw--- ~ 

There is a problem. When the subsurface velocity variation is not small and the observed 
data is band-limited in frequency and contains noise, how much information of the true 
unknown c~(x) does the c~(x) in equation (2.5) contain? That is unclear. 
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In this section we investigate the relation between the interior surface and the modulus 
maxima of the wavelet transform of c~(x). We discover that, although ~(x) in equation (2.5) 
is different from the true unknown function a(x), the singularities of c~(x) in equation (2.5) 
are almost the same as the true unknown ~(x) for a single interior surface. 

Motivated by [4], we choose three-dimension wavelet functions ¢1 (x), ¢2(x) and ¢3 (x) 
as follows: 

¢ i ( x ) -  OQ(x) i =  1,2,3, x = ( x l , x e , x 3 ) .  (2.6) 
Oxi ' 

1 ( x 2 + x 2 + x ~ )  is the Gaussian function. Where, Q(x) - 27rx/'2-~ exp 2 

Let Q~(x) = ~ Q  and ¢~(x) = ~ ¢  . 

The wavelet transforms are given by, 

W~c~(x)=(c~,¢~)(x)=s c~,Qs)(x), i=1 ,2 ,3  (2.7) 

in which " , "  is the convolution operator. 
Under scale s, the three-dimension wavelet operator W is given by 

ws (x) = ~ 8  

0 

ox2 , 
__o_o 
ox3 * 

= s V ( a ,  Q,)(x), (2.8) 

where "V" is the gradient operator. 
By equation (2.8), we can prove that the modulus maxima of Wsa(x) are attained on 

the interior surface. Therefore, we know the location of the interior surface by detecting the 
maxima of IWs~(x)l. 

In the following, we give the main results of this paper. The proof is given in Appendix A 
and B. 

2.1. AT THE SINGLE TILTED PLANE CASE 

As is shown in Fig. 1, suppose the equation of tilted plane S is 

xl sin t9 cos ~p + x2 sin 0 sin ~ + x3 cos t9 - h cos 0 = 0, 

with speed v = co above the plane and speed v = cl below the plane. Let ¢ = (¢1, I2, 0) be a 
point on the earth's surface. Suppose a unit impulse is set off at the surface, the reflected data 
observed at the surface can be approximated by 

Us(if, t) = R 5(t 21/co) 
87rl (2.9) 
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Fig. 1. Model for tilted plane. 
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Where, l = h cos 0 - (1 cos ~ sin 0 - ( - 2 sin ~ sin 0, R is the normal incidence reflection 
coefficient, which is, 

Cl -- cO 
R =  

C1 -q- C 0 

If  the data us ( ( ,  t) are substituted in equation (2.5) and the calculations are carried out, 
one obtains 

o (x) = - -  exp{2iw[(-Xl cosqo - x2 s in~)  sin0 + ( h -  x3) cos ~]/c0} dw. 
71" 

(2.10) 

Here w = c0k3 sec 0. 
Based on (2.8) and (2.10), we obtain 

2v~Rco 
IWs~(x)l  - v ~  - - e x p  {-2~--fi[(xt cos~ + x2 sin~)sinO + (x3 - h)cosO]2 } . (2.11) 

But, in practice, the frequency used is limited. So, w in (2.10) varies not from - ~  to ~ ,  
but from wl to w2, where w2 > Wl > O. In this case, we have to analyse the effects of the 
limited bandwidth. In this paper the following results are obtained 

{ b 2 } ~ 2  Z(a,b, wl,w2) iWsa(x)l = 4Rs exp - e x p ( - a w  2) dw + (2.12) 
7/" ~aa  1 

Here 

a = 282/c g, b = 2 [ ( - x ,  cos ~ - x2 sin ~)s in  0 + (h - x3)cos  0J/c0 (2.13) 
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1 2" <~a[eXp(-a031)+exp(-a032)]exp{-l(b2-Tg)} 

in which ro • (0, b) or ro • (b, 0), if b = 0, Z (a, b, 031,032) = 0. 
In (2.12) and (2.14), let 03 1 -'+ --OO and 032 --+ +oo.  Then we obtain 

exp(-b:--a) Z(a,b, 031,032) -30 

and then, from (2.12) 

595 

(2.14) 

( b;a)  4Rs ( b;a)  iWsa(x)l = 4RSexp - exp(-a032)d03 = - exp - 
71" eo 71" 

} - v' ~ e x p -  [(xlcos~o+x2sin~o) sinO+(x3-h)cosO] 2 . 

This is the same as (2.11). 
From (2.12), when b = 0, that is, 

(X 1 COS (fl -+- X 2 sin ~) sin 0 + (x 3 - h) cos 0 = 0, 

the value of IWsc~(z)l is maximal. 
Therefore, we can know the location of the interior surface by detecting the modulus 

maxima of  Wsa(x). 

2.2. THE GENERAL CASE 

Suppose the equation of the interior surface S is f (xl ,  z2, z3) = 0, and for x close enough to 
the surface S there will be only one perpendicular from x to S. Suppose the normal vector of 
the surface S in g'0 is h0, here h0 = (f'~ (~0), f t  2 (X0), f~3 (g'0)). 

If  x is near to surface S, we obtain the following result 

4Rs { b 2 }  ~ -~2 Z(a,b,031,w2) IWsa(x)l ..~ - - ~  exp -~aa l exp(-a032) d03 + (2.15) 

in which 

/ - x t b = f'x~(xo)( 1 - 2ol) + f~z(20)(x2 - xo2) + f~3(xo)(x3 - xo3), (2.16) 

. t2 [~ ~ t2 - 2 2 2 
a = 2s[J~](~o) + Ix2t o) + f~3(xo)]# 03/co, (2.17) 

where Z(a, b, 031,032) satisfies Z(a, b, 031,032) = 0 as b = O, and 

exp (-4b-~Za)Z(a,b, 031,032) <1 2 a [eXp(-a03, ) + exp(-a03~)] exp [-  ~--~(b2 - ~-2) ] 

(2.18) 
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Particularly, if x is on the surface S, then the value of IWsa(x)lis maximal: 

4Rs f ~2 IWs~(x)[ ~ - ~  exp(-aw2)dw. (2.19) 
1 

Comparing with the inverstion operator fl(x) introduced in [2] and [3], from (2.15), (2.18) 
and (2.19), we can not only detect the location of the interior surface more precisely but also 
estimate the effect of band-limited nature of the input data. This result will be checked by 
numerical computation in section 4. 

3. The analysis of the effects of the noise in data 

Because there always exists noise in the observed data, it is important to find the velocity- 
inversion method which can suppress the noise. To emphasize the basic idea, our work is 
performed only for the one-dimensional case. 

In the one-dimensional case, an impulsive source, -5(x3 - xs3), is assumed to act at depth 
x~3 (the source position), and at time t = 0. Similar to (2.5) for the constant background 
zero-offset case, one obtains 

S 4 Us (0, O, w) e -2i~z3/c° dw. (3.1) 
 c--o 

Suppose that us (0, 0, w) is affected by n (w) and the observed data becomes us (0, 0, w) + 
n(w), where n(w) is the Fourier transform of the noise n(t). Then, c~(x3) correspondingly 
becomes ~(x3), such that 

S 4 n(w) e -2i~x3/c° dw. ~(X3) =O¢(X3)--~---~ (3.2) 

That is 

~(X3) = O~(X3) -- 2n(x3). (3.3) 

Equation (3.3) implies that the noise in the observed data should affect the a(x3). 
If we let the wavelet operator W act on the equation (3.3), we obtain 

w  (x3) = w, (x3) - 2W, n(x3). (3.4) 

Suppose the noise n(x3) is real wide-sense stationary white noise of variance a 2. We 
denote by E(X) the expected value of a random variable x. In this paper the wavelet ¢(x)  is 
real. Grossmann et al. in [5] have shown that the decay of E(lW~n(x3)[e) is proportional to 
1//s. 

On the other hand, Mallat et al. in [4] have shown that the Lipschitz exponent 3' of step 
function a(x)  is equal to zero and the Lipschitz exponent 7 of white noise n(x3) is equal to 

1 2 e, for ¢ > 0. 
Furthermore, Mallat et al. in [4] have shown that if a tempered distribution f(x) has a 

uniform Lipschitz exponent 7, there exists constant K such that 

IW y(x)l < Ks , (3.5) 
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Therefore, by the above discussion, we know that there exist two constants k0 and ki such 
that 

IW~c~(x3)l ~< k0 (3.6) 

and 
1 

IWsn(x3)l <~ k i s -~ -  . (3.7) 

The equations (3.6) and (3.7) imply that the modulus maxima of the wavelet transform of 
the noise n(x3) should decrease (or increase) when the scale increases (or decreases), but, the 
modulus maxima of the wavelet transform of c~(x3) should remain constant over a large range 
of scales. 

In fact, by the equations (2.11) and (2.15), we can obtain the same result, that is, the 
modulus maxima of W~c~(x3) remain constant or increase when the scale s increases. 

So, when scale s is positive and smaller than 1, ~(x3) is dominated by the noise and it is 
extremely difficult to recover any position information of interior surface from the maxima of 
IWs~(x3)l. But when the scale increases and becomes larger than 1, the maxima of IW~n(x3)l 
become much smaller, which means that the effects of noise become weaker and weaker. At 
this moment, the ~(x3) in equation (3.3) is dominated by the c~(x3) and it is very easy to 
know the position of the interior surface from the maxima of IW~(x3)l. 

4. Numerical check 

4.1. COMPUTER IMPLEMENTATION 

We now simply describe the numerical procedure to calculate the Wsa(x).  
(1) Using Fourier Transform and the inverse Fourier Transform in three variables, we 

can carry out the calculations of a(x) from the observed data u~((, t). The details of the 
calculation can be found, for instance, in [2]. 

(2) Using discrete fast wavelet transform, which can be found, for instance, in [4] and [7], 
Wsa(x) can be calculated. 

(3) Choose the maximal value of IWsc (x)l to determine the location of the reflector. 

4.2. NUMERICAL EXAMPLES 

For the band-limited input data, to check the imaging formula in this paper, let us consider 
a single inclined planar reflector. The angle of inclination is 30 degrees with respect to a 
horizontal oxl axis, and the planar reflector is parallel to oz2 axis, that is 0 = 30 ° and ¢ = 0 ° 
in Fig. 1. Above the plane, the speed co = 4500 m/sec, and below the plane, the speed 
cl = 5500 m/sec. The inclined plane is assumed to be at depth 2000 m below the original 
point (0, 0, 0). 

Fig. 2 shows that the image of the reflector produced by IWs (z)l is correct. On the other 
hand, comparing with the results in [1], [2] and [3], we know that, although the location of the 
reflector can be detected correctly by two inverse operators Wso~(x) in this paper and/7(x) 
in [2], for the input data not containing any noise, our inverse method can estimate the effect 
produced by the band-limited nature of the input data (see the equations (2.15) and (2.18) in 
this paper). 

For the same theory model in Fig. 2, we add the real white noise to the data us ((, (, t) (the 
SNR is 3.4 dB). The image produced by the inverse operator 13(x) introduced in [2] is shown 
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Fig. 2. A 6-50 Hz bandwidth representation of[Ws c~(x)[, scale s --- 21 . 

in Fig. 3. The effects of the noise to/3(x) is very serious, and we can not know where the 
location of the planar reflector is and how many the reflectors there exist. 

But, in Fig. 4, the image of the same reflector produced by the modulus maxima of Wsa(x) 
is far more desirable. Calculations show that Wsa(x) can suppress noise very well as the scale 
s being larger than 23. But the scale s should stay in a suitable range, for example, s smaller 
than 28, because some spatial resolution may be lost for too large a scale. 

In Fig. 3, the SNR is 0.8 dB. In Fig. 4(a), (b) and (c), the SNR is 2.2 dB, 6.4 dB and 16.8 dB 
respectively. 

5. Discussion of results 

In this paper, based on the approximate formulas developed by Bleistein, the authors advanced 
a new method of velocity inversion. Using the property of the localization in space domain of 
the wavelet, we showed that the singularity of the velocity can be extracted and characterised 
from the local maxima of the wavelet operator. In this paper, the new image formulas are 
obtained. Based on these formulas (eq. (2.15), (2.18) and (2.19)), we can not only detect the 
location of the reflector in the earth, but also estimate the effect of the band-limited nature 
of the input data. Through the theoretical analysis and numerical check, we showed that 
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Fig. 3. Adding real white noise to input data, a 6-50 Hz bandwidth depth section determined by/3(x). 

our method can suppress the noise in the observed data and can estimate the effect of the 
band-limited input data. 

In this paper, we only deal with the imaging problem in a constant background. The 
inversion in the variable media will be considered in another paper. 

6. Appendix A 

First let us give the proof of eq. (2.11). We apply the wavelet operator (2.8) to a(x)  in (2.10). 
To calculate W s a ( x ) ,  we need to calculate W ~ a ( x ) ,  j = 1,2, 3. By eq. (2.7), we obtain 

7 r 2 ~  cos ~ sin0 d~ exp{2iw[((yl  - Xl)COS~ 
(DO O o  

+(Y2 - x2) sin ~) sin 0 + (h + Y3 - x3)cosO]/co} 1 (y2+y2+y ) 
× ~ exp - 2s 2 dyl dy2 dy3. (A. 1) 

By using the formula 

f_ ~ e x p ( i w x  - x 2/2)  dx : (271") 1/2 exp( -w 2/2) 
O 0  
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Fig. 4. (a) 

we g e t  

W~',~(23) -- _ 2 v ~ R c o  

v ~  

in which, 

a = 2S2/C 2 and 

Due to 

_:~ e x p ( - a w  2) s i n / ~  dw = 0, 

we find 

w ~ ( 2 3 )  - 

- -  cos~s in t9  exp - - - -Zw + ibw dw, 
C O 

(A.2) 

b = 2 [ ( -231  c o s  ~ - 232 sin ~o) sin 0 + (h - 233) c o s  ~ ] / c  0. 

e x p ( - a w  2) cosbWdW = exp - ~  , 

2v '2Rco 
- -  cos qa sin t9 v~ 

× exp { - 2-~ [ ( Z l COS qO + z2 sin g~ ) sin O + ( x3 - h ) cos tg]2 ) • (A.3) 
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Fig. 4. (b) 

Similarly, the calculations of W2a(x) and W 3 a(x) are carried out and we obtain 

W2a(x) - 2v/2Rc° s in~sinO 

x exp { -  ~-~[(Xl COS~O + x2 sing~) sinO + (x3 - h)cosO] 2 } 

and 

(A.4) 

Wff a(x) - 2x/2Rco cos O 

x exp { - 2 ~ [ ( X l  COSqO + z2 sin~o) sinO + (z3 - h)cosO]2 } . (A.5) 

Note that, ]Wsc~(x)l = v/[W~a(x) l  2 + IWZa(x)] 2 + ]W3~(x)] 2 and cos 2 ~s in  2 0 + sin 2 ~o 

sin 2 0 + cos  2 0 = 1, so that 

,Wsa(X), - 2x/2RC°exp{-~-~[(xlcos~+x2sin~)sinO+(z3-h)cosO]2)~ 

(A.6) 
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Fig. 4. (a)-(c) Adding real white noise to input data, a 6-50 Hz bandwidth depth section determined by Iw~6(x)l 
under scales s taking 2 °, 21 and 23, respectively. 

Equation (A.6) completes the proof of eq. (2.11). 
Now, let us prove eq. (2.12). For the case of limited bandwith, equation (A.2) becomes 

wla(x )  = 2RscostosinO 
rr2v ~ [Zl (b) + iz2(b)]. (1.7) 

Where, 

/$ /$ z,(b) = exp(-aw2)cosbwdco, z2(b) = exp(-ac02) sin ko dco, (A.8) 
1 1 

in which, 

2s  2 

Due to 
dzl(b) 

db 
dz2(b) 

db 

b = 2 [ ( - x l  cos ~p - x2 sin ~o) sin 0 + (h - x3) cos 0] 

CO 

l 2 - - b a zl (b) + ~aa [exp(-aw2) sin ba.,2 - e x p ( - a w  2) sin &o,], 

1 2 - b az2(b) + ~aa[eXp(-aw2)cos&02 -exp( -aoa2)cosboa l ] ,  
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~(b) 
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= exp - 4 - £ a  exp(-aw 2) dw 
1 

So 1 l + (exp(-aw22)sinb~2-exp(-a~zT)sinba~l)2aexp 4a db,  (A.9) 

z ~ ( b )  = -exp(-b~---£)[foV(exp(-aafl)cosbw2-exp(-a~z2)cosbw,)~-~exp(b~---~)db]. 

(A.IO) 

From (A.7), (A.9) and (A.10), we have 

w J ~ ( ~ )  = 
4Rs cos ~o sin 0 

71" 

x exp -4--aa exp(-aw 2) dw + exp - ~ a  Z(a, b, 
I 

~1,  C02)]. (A.1 1) 

Where, 

Z(a ,  b, Wl, ~2) b l[exp(-a~2)s inbw2-exp(-aw'()s inbwi]  -~a db 

io } - i  b 1 [exp(-aw22)cosbw2 -exp(-aaJ~)cosbwl] -~a db 

(A.12) 

Similarly, we obtain 

w ~ ( ~ )  = 
4Rs sin p sin 0 

71" 

x e x p - ~ a  exp(-aw2)dw+exp -~ a  Z(a,b, wi,w2) , 
1 

(A.13) 

w 3 ~ ( x )  - 
4Rs cos 0 

71" 

x exp ~a +exp -~aa Z(a,b,~zi,a~2) . 

Therefore 

4Rs 
I W ~ ( x ) l  = - -  

71" 
( b2 ) L[2 exp(-aafl)dco exp - ~ a  + Z(a, b,a~l,W2) . 

(A. 12) and (A. 15) complete the proof of eq. (2.14) and (2.12). 

(A. 14) 

(A.15) 



604 S. Shougen and H. Jishan 

Appendix B 

From (2.5), by the method of stationary phase which is found, for instance, in [6], we have 

c~(x) - 16x3 I d2~" 1~2e-2~r/C°us(¢,co)dco, (B.I) 
71C0 J E  r Jw l 

where Us(~,w) = f ~  Us(~,t)e i~t dr, r = V/(Xl - ~1) 2 + (x2 - ~2) 2 + x 2, E represents the 

total domain of recording positions ff on the surface of the earth and (wl, w2) represents the 
k-domain corresponding to the band-limited range of w. 

For us (~', w) we use the Kirchoff approximation back-scattered field which can be found 
in [6], 

iw [ R h" ÷o exp(2iwro/co) dS, (B.2) 

where n is the unit upward normal vector, r0 is a unit vector from the surface S to the 

point, ro = Ixo - ¢1 - -  V/(XOl - ¢1) 2 + (x02 - ¢2) 2 -'l- (x03 - observation if3) 2, 

÷ol/ o - -2 - %2 + ÷0)2 
R =  

eol/ o + -2 - %2 + eo)2 

and the surface S is described in terms of two parameters, (al, a2) = a with xo = xo(a). 
Note that dS = v '~dal  do2 ----  v'gd2c r. From (B.1) and (B.2) we obtain 

2x3i ~2 d2~ h • r0  • 
-- v / - 9 - T  R exp{ 2zw( ro (B.3) 

OXOoa, ~Ox°2 det O o] 
w h e r e 9 =  × = "OakJ ' ( j , k= 1,2). 

In Fig. 5, given a point x close enough to the surface S, drop perpendiculars from x to S 
and .~o is the foot of the perpendicular. Each such perpendicular defines a possible value of a 
at a stationary point. Extend each normal up to the data surface, ~. For each ~ in the aperture 
E, the pair ~, a is a stationary point of the four-fold integral (B.3). 

Let 

(I)(ff, a) = ro - r. (B.4) 

Because the vectors, :~0 - ff and x - ff are colinear, the difference of distance defining 
in (B.4) reduces to distance along the normal through x. 

That is 

c/, = r0 - r = d (B.5) 

with d > 0 when x is above S and d < 0 when x is below S measuring signed distance from 
S along the normal. 

Applying the method of stationary phase to (B.3) we find 

2X3v/9Rni [~z 1 exp{2iwd/co}dw. (B ~6~ 
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o f  x2 

5," g r 

.2:3 

Fig. 5. Model for curved surface. 

Where  D = I det['I'ij]l, [ ~ j ]  = 

02~ 02~ 

o¢,o j 
02~ 02~ 

O¢~O~j Oa~&rj 

Cl - co Rn 
Cl +co" 

Especially, when x is on the surface S, we can carry out the calculation of D = ] det[I, ij]] 
and obtain D = (9 z2)/(r4r2). 

Suppose the normal vector of surface S in ~0 is rio, then h = (f~l (~0), f~2 (g'o), f~3 (~0)). 
By (B.5), we know that there exists a factor # > 0 such that 

t - X d =  # [ f ; l ( X O ) (  1 - XOl)  qt_ f ; 2 ( ~ o ) ( x 2 _  x 0 2 )  -l.- ftx3(Xo)(x3- ;~03)] (B.7) 

From (B.6) and (B.7), we have 

o (x) - 2X3v/-dRn L "z lexp(2iw#[]~l(x,o)(xL- :~Ol) + f£2 (YZo)(x2 - ~:o2) 

-t-fxt3 ( g ' 0 ) ( X 3 -  .~03)]/eo} dw. (B.8) 

Now let us define 

L ~"2 1 . / l -- 
= -exp{2~a~[ fx ,  (~:ol)(Xl - ~Ol) + f'~2(xo)(x2 - ~oe) 

1 loft 

-k-L3 ( e0 ) (x  3 - :2o3)1/co} d~  
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If z is on the surface S, the coefficient of a(z)  in (B.8) becomes 2Rn/Tr, and when x 
is near to surface S, we know that a ( z )  is equal to a l  (x) multiplied by "a slowly varying 
function". Therefore, we have the following approximate formula 

2R,~ 
a ( z )  ~ a l  (x), as x near enough to surface S. (B.9) 

71" 

Very similar to the proof of eq. (A. 15), based on eq. (B.9) we can easily complete the proof 
ofeq.  (2.15). 
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